
A New Lightweight Homomorphic Encryption
Scheme for Mobile Cloud Computing

Mohd Rizuan Baharon, Qi Shi, and David Llewellyn-Jones
School of Computing and Mathematical Sciences

Liverpool John Moores University
Liverpool, United Kingdom

{M.R.Baharon, Q.Shi, D.Llewellyn-Jones}@2011.ljmu.ac.uk

Abstract. The emerging technology of mobile devices allows
mobile users to access a wide range of applications through the
Internet connection. As such applications demand extensive
computational power, it poses a challenge to the devices with
limited computation power, memory, storage and energy.
However, such a challenge could be overcome by cloud
computing as the cloud offers virtually unlimited dynamic
resources for computation, storage and service provision.
Nevertheless, mobile users are still reluctant to adopt this
technology as moving private data to the cloud with no physical
and limited digital control by themselves raises security
concerns to their data. Encryption using the primitive
encryption schemes is unsuitable for use in cloud environments,
as data need to be decrypted first before they can be processed,
resulting in the data being exposed to the cloud. Moreover,
although homomorphic encryption is believed to be one of the
potential solutions to allowing arbitrary computation on
encrypted data, its efficiency is still an obstacle for its
implementation. Thus, this paper will deeply look at efficiency
issues and propose a new Lightweight Homomorphic
Encryption (LHE) scheme which minimizes the use of
computation power at encryption and key generation. The key
contribution of this work is to have a lightweight scheme with
improved efficiency, while enabling homomorphism under both
addition and multiplication.

Keywords-Cloud Computing; Mobile Cloud Computing; Data
Storing and Processing; Homomorphic Encryption

I. INTRODUCTION

Nowadays, mobile devices like smartphones and tablets are
increasingly becoming an essential part of human life as they
are the most effective and convenient communication tools
not bounded by time and place. Such devices are quickly
raising popularities due to the support for a wide range of
applications like gaming, image processing, video processing
and online social network services that allow users to
accumulate rich experience. Such applications include iPhone
apps and Google apps, which run on the devices and/or on
remote servers via wireless networks. The rapid progress of
mobile computing becomes a powerful trend in the
development of IT technology as well as commerce and
industry fields. However, the mobile devices are facing many
challenges in their resources like battery life, storage, and
bandwidth. Furthermore, they are also facing communication
challenges such as mobility and security [1]. Such limitations
have significantly effected on the improvement of service
qualities.

On the other hand, with the emerging technology of cloud
computing, more and more services have been offered and
delivered through the Internet. Cloud computing offers
tremendous advantages by allowing users to use its
infrastructure like servers, networks, and storages, platforms
such as middleware services and operating systems, and
software like application programs. All of those services are
provided by Cloud Service Providers (CSPs) like Google,
Amazon, and Salesforce at low costs. In addition, cloud
computing enables users to elastically utilize resources in an
on-demand fashion. As a result, mobile applications can be
rapidly provisioned and released with the minimal
management efforts or service providers’ interactions. With
the explosion of mobile applications and the support of cloud
computing for a variety of services for mobile users, mobile
cloud computing is introduced as an integration of cloud
computing into the mobile environment. Mobile cloud
computing brings new types of services and facilities for
mobile users to take full advantage of cloud computing.

In order to leverage such a technology and services,
mobile users need to outsource their data to the CSPs for
storing and processing purpose. However, outsourcing such
data, which is often private or sensitive, into the clouds with
no physical and limited digital control by the users raises
serious security concerns to the data [2]. Furthermore,
inappropriately handling such data could result in a disaster
to the data owner due to data misuse, data leakage, or data
stolen by other parties that use the same services. Moreover,
the CSPs do not offer proper security guarantees to the data
owners [3]. Due to the scale, dynamicity, openness and
resource-sharing nature of cloud computing, addressing
security issues in such environments is a very challenging
problem [4].

To ensure the security and integrity of the data are
preserved in clouds, encryption techniques should be
implemented. Primitive encryption schemes such as RSA are
good for storing purposes [5]. However, such encryption
techniques prevent data from being processed by cloud-based
applications [6]. Thus, a scheme that allows data to be
processed in an encrypted form, like a Fully Homomorphic
Encryption (FHE) scheme, is extremely desired. Although a
number of existing FHE schemes have been proposed and
improved upon, all of them are far from practical as
efficiency is still a big challenge for their implementation [7].
For instance, existing FHE schemes based on Lattices are
suffering from efficiency issues due to the amount of noise
introduced during the processing stage of data [8].This work was supported in part by Liverpool John Moores University

(LJMU), United Kingdom, the Ministry of Higher Education Malaysia
(MOHE), Malaysia and University Technical Malaysia Melaka, Malaysia.

2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications;

Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing

978-1-5090-0154-5/15 $31.00 © 2015 IEEE

DOI 10.1109/CIT/IUCC/DASC/PICOM.2015.88

618

Additionally, a scheme based on a bilinear map allows
arbitrary additions and only one multiplication on encrypted
data [9]. Furthermore, existing FHE schemes are
computational expensive, which require a lot of computing
resources to implement such schemes. This inhibits the
mobile devices from computing in an efficient manner. A
scheme that enables data to be processed using both addition
and multiplication is highly desired by many applications in
order to process users’ data to something more significant.
Thus, such limitations require an improved FHE scheme to
be proposed.

To address the above need, in this paper we propose a
new lightweight homomorphic encryption scheme that is
constructed based on Gentry’s scheme. We follow the same
parameters setting as in [10], e.g. ��’s with a large size are
designed to avoid a generalised version of Howgrave-Graham
attack. The main difference between the two schemes is that
our choice of plaintext for encryption is an integer, whereas
Gentry’s scheme is in the form of bits. This novel choice
leads to our scheme being more efficient as the encryption on
an integer is faster than encryption on every single bit [11].
Our scheme also provides an improved efficiency as the key
generation and encryption require low computation.
Moreover, our scheme supports homomorphism under both
addition and multiplication as long as a plaintext result
satisfies some conditions specified. To implement such a
scheme, we also provide a protocol that allows three parties
to communicate with one another in order to process data in
an encrypted form. Such a protocol will ensure that the
security and integrity of the outsourced and processed data in
the third party environment are preserved. In this work, the
performance of LHE is thoroughly analysed and evaluated
with detailed simulations.

The rest of this paper is structured as follows. In Section
II, we briefly review the background and some related work
on secure mobile cloud computing. We then describe the
application setting concepts that will be used in constructing
our scheme in Section III. In Section IV, we explain our
proposed scheme together with its related process. Section V
describes the security analysis of the proposed scheme, while
the performance analysis of our work is provided in Section
VI. Finally, we conclude this paper in Section VII.

II. BACKGROUND

A. Mobile Cloud Computing
People would like to work and manage their daily life and
tasks regardless of locations, times and situations. This
requires the people to have mobile devices that can be carried
everywhere at any time. Mobile devices have rapidly
emerged and become popular with improved capabilities such
as computing power, battery resources, security and privacy.
As a result, the devices have been extended and improved to
suit recent applications provided through the Internet like
cloud computing. With such improvements, people can
accomplish their daily tasks like Internet banking, GPS, etc.
conveniently and efficiently. Even though the capabilities on
the mobile devices have improved, some applications
demand extensive computing power and battery
consumption. Wireless communication devices for instance
appear to be highly power-consumptive.

Several techniques in [12] have been introduced to reduce
the power consumption and save the energy during the
communication. Furthermore, the battery life can be extended
by offloading large tasks for remote processing. Work in [12]
shows that the portable computers executing their large tasks
remotely can save up to 51% of battery power. Dinh, H., T.,
et al. [1] proposed a computation offloading technique with
the objective to migrate large computations and complex
processing from resource-limited devices like mobile devices
to resourceful machines such as servers in clouds. This
avoids taking a long application execution time on mobile
devices, which would result in a large amount of power
consumption. To apply this offloading technique, several
works have been done to evaluate the effectiveness of such a
technique through some experiments. The results demonstrate
that the remote application execution can save energy
significantly.

On the other hand, storage capacity is also a constraint for
mobile devices. Mobile cloud computing is developed to
enable mobile users to store/access a large amount of data on
the cloud through wireless networks. The Amazon Simple
Storage is one of the examples that facilitate storage as a
service. Another example is Image Exchange which utilizes
the large storage space in clouds for mobile users. This
mobile photo sharing service enables mobile users to upload
images to the clouds immediately after capturing. Users may
access all images from any devices. With the cloud, the users
can save a considerable amount of energy and storage space
on their mobile devices because all images are sent to, stored
and processed on the clouds [1].

Moreover, in cloud computing, all services are delivered
through web applications and data that has been outsourced is
no longer owned by the users. Shifting all the data and
computing resources to the cloud can have implications on
privacy and security. Since the data is stored and managed on
the cloud, security and privacy settings depend on the IT
management provided by the cloud. The CSP typically works
with many third party vendors. There is no guarantee how
these vendors may safeguard the data. Moreover, data on the
cloud may be stored at multiple locations across different
states and countries. Data that might be secure in one country
may not be secure in another: different jurisdictions may
apply over accessing the data. All these factors make it
evident that all data cannot be stored in the cloud without
considering the privacy and security implications. One
possible solution to storing data is to encrypt the data before
storage. This can prevent unauthorized access even when the
storage is breached at the cloud. If the data is encrypted, then
it has to be decrypted at the CSP because of the need to
perform operations on the data. On the other hand,
performing encryption techniques before sending the data to
the cloud requires some additional processing on the mobile
system and consumes additional energy [14]. Furthermore, as
mobile cloud computing is based on cloud computing, all the
security issues are inherited in mobile cloud computing with
the extra limitation of resource constraint mobile devices.
Due to the resource limitation, the security algorithms
proposed for the cloud computing environment may not work
well directly on a mobile device. There is a need for a
lightweight secure framework that provides security with

619

minimum communication and processing overhead on mobile
devices [15].

B. Security and Privacy in Mobile Cloud Computing
Providing strong security and high privacy means requiring
more computing resources and energy consumption.
Furthermore, increasing the security of data will decrease the
functionality that can be executed on the data [16]. Therefore,
a balance between security, functionality and energy
consumption has to be the guideline in providing a scheme
that can be implemented to the mobile data in an efficient
manner. Due to this reason, a lot of research work has been
conducted to provide security and improve privacy of
outsourced data with consideration of the energy
consumption and storage spaces. There are several
approaches to securing the outsourced data using existing
methods. The first approach is to ensure the integrity of
users’ data stored in cloud servers. Itani et al. [17] proposed
an energy efficient framework for mobile devices to ensure
the integrity of the mobile users’ files/data stored on a cloud
server using the concept of incremental cryptography and
trusted computing. Furthermore, Jia et al. [18] introduced a
secure data service that outsources data and security
management to cloud in a trusted mode. The secure data
services allow mobile users to outsource data and data
sharing overhead to a cloud without disclosing any
information about the shared data. To achieve the secure data
service, the proxy re-encryption and identity based
encryption are implemented. The proposed secure data
service provides not only data privacy but also fine-grained
access control with the minimum cost of updating access
policy and communication overheads. On the other hand,
Shukla et al. [19] proposed a scheme for smart phones to
ensure the security and integrity of mobile users’ files stored
on cloud servers. An archive mechanism that integrates cloud
storage, hybrid cryptography, and digital signatures has been
designed to provide security requirements for data storage of
mobile phones. Such a mechanism not only can avoid
malicious attackers from illegal access but also can share
desired data and information with targeted friends by distinct
access rights.

From our point of view, the schemes in [17] and [18] are
based on the trusted mode. In mobile cloud environments,
such schemes are not suitable for implementation as the cloud
servers are assumed to be untrusted third parties. Therefore,
they are not allowed to gain any information of the processed
and stored data. Furthermore, work in [19] mainly focuses on
security of the stored data. In mobile cloud environments,
data storage is not the only services provided to the
outsourced data. Data processing is one of the main services
provided by the cloud servers as they have a huge amount of
computing resources. Thus, securing the processed data is
also important to prevent any security and privacy breaches
to the user data. Based on such factors, LHE is proposed to
provide a security solution to the processed data. With an
improved efficiency, the LHE is believed to be the best
scheme that enables data to be processed by third parties like
cloud in an efficient and secure manner.

III. APPLICATION SETTINGS

The LHE is proposed to enable mobile data to be outsourced
and processed in cloud environments. However, data
outsourcing itself is not the best approach to overcome the
limitation of the mobile devices as the security and privacy of
the data are highly important. Furthermore, heavy
computation for securing the data on mobile devices before
outsourcing degrades their battery lifetime. Thus, the security
and computation complexity need to be balanced in order to
provide a better scheme for the outsourcing data. In this
section, we describe the application settings for implementing
such a scheme.

To process data in a ciphertext form, we assume that there
are a group of data distributors, a data client and a cloud
server as detailed below:
� Data Distributors ��:

They are a group of people who are carrying mobile
devices like smart phones or tablets. All devices can be
connected to the Internet through wireless connection.
The group members contribute their data to the data client
and all the data has to be processed by the cloud server.

� Data Client (DC):
It is a third party organisation that requires information
from the data distributors in relation to specific tasks and
purposes. It has low computing resources and storage
spaces. It leverages the technology provided by the cloud
to compute and store data purposely.

� Cloud Server (CS):
A third party organisation which possesses a huge amount
of computing power and storage space for computing and
storing purposes. It is an untrusted party. CS provides a
lot of Internet based applications and delivers as a service
to the client through Internet connection. The client just
needs to pay on a per use basis without any hassle to
manage the software licence, maintenance, etc.

Figure 1. The protocol of implementing LHE scheme in cloud

For application setting purposes, we consider a public health
scenario where a group of data distributors �� in the park
share their personal health information like heart rates, blood
pressures and weights with a local hospital (DC) through a
cloud server (CS) to get some statistical results based on the
provided data. Such application setting can be illustrated in
Fig. 1. Individuals may be unwilling to disclose their personal
data to CS and DC if there were no guarantee that their data

620

would not be used to invade their privacy. Thus, to allow
such a scenario to be implemented in securely, we propose
the following protocol as illustrated in Fig. 1. The protocol
involves four phases, which are described below:
Phase 1: DC and data contributor group
� DC broadcasts a request to the group to request specific

data to be processed by a CS application.
� Each group member �� receives the request through Wi-Fi

connection.
� �� in the possession of the requested data responds to DC

to confirm their willingness for the data provision.
� DC generates a set of private keys based on the responded

group members and sends the keys to them.

Phase 2: Data contributor group and CS
� Each participating member �� randomises its data to avoid

data guessing by the other parties.
� �� encrypts the randomised data.
� �� sends the encrypted data to CS for processing.

Phase 3: CS
� CS receives the ciphertext data from every

participating ��.
� CS processes the received data using a set of applications

(�, �, ℎ) requested by DC.

Phase 4: CS and DC
� CS sends the processed result to DC.
� DC decrypts the result using its master key.

VI. THE PROPOSED LHE SCHEME

The proposed LHE scheme consists of four algorithms, which
are key generation, data encryption, data recovery and data
evaluation. All algorithms are described below.
Suppose that:
� There are n mobile devices participating as data

distributors, each of which is denoted as �� (1 ≤ 	 ≤
).
� The maximum length of data items to be computed is ��

bits.
� CS is employed to compute the received data from the n

mobile devices.
� A function � is defined as summation, a function � is

defined as multiplication and a function ℎ is defined as
the combination of both summation and multiplication.

� A client-server structure is used to represent the devices
as nodes and their connections as links.

� Every connected device and CS have already
authenticated each other and established a secure
communication channel between them if necessary.

A. Key Generation
The proposed Lightweight Homomorphic Encryption (LHE)
scheme employs a private key for data encryption by each
contributor ��. The private key is shared between its
associated DC and ��, and used for symmetric data
encryption.
To produce this key, we adopt the parameter delineations for
the verifiable encryption of RSA signatures [20]. That is, DC
defines as the product of two safe primes � and �, i.e. = �� where � = 2�� + 1 and � = 2�� + 1 with �� and �� being primes. Also, �� is used to denote the subgroup of

squares in ℤ�∗ (i.e. the multiplicative group modulo), and a
number �́ ∈ ℤ�∗ is randomly picked up to yield � =
�́� mod , i.e. � ∈ �� . and � will be used as public
numbers, w needs to be discarded without disclosing it to
anyone, and p should be kept securely.
Additionally, DC selects a prime r (< p) and stores both p and
r as its secret master keys. To generate keys for each ��, DC
picks up random numbers �� and �� to produce the following
keys: �� = (��� + ���) mod . �� is ��’s private key. The n private keys �� need to meet the
following conditions:

(a) For the summation, 2�
 < � and ��(��	, ��) < �
(b) For the product, (2�)� < � and �ℎ(��	, ��, �, �� ,) < � .

where � is the maximal bit length of the data to be encrypted �� and �̅	 is a random number chosen by an encryptor.
The detailed reasons for the above conditions will be
discussed later when the proposed data encryption and
decryption are presented. In brief, the first part of both
conditions says that the sum or the product of encrypted data
items is less than � for the purposes of ensuring the recovery
of the result. The second part of both conditions means that
the first part of ��’s private key is multiplied by a summation
or a combination of summation and multiplication of some
values is below �. This condition also allows the summation
or product result to be recovered.

B. Data Encryption
Similar to the work in [21], every encrypted data goes
through a two-stage process: data randomisation and data
encryption. Before encrypting the data, each �� first needs to
expand its data "� to introduce sufficient randomness. Note
that the data range in many mobile applications is usually
limited. For instance, in a traffic monitoring application, the
driving speed is between 0 to 120 km/hour. Thus, if ��
directly submits the encrypted "� to CS without
randomisation, then CS can deduce "� by exhaustive search.
To avoid this situation, each �� expands "� by adding a
random number. In particular, assume that each data is of �
bits. �� generates a random number #� of $ bits known only
to itself and computes as below: �� = 2�%&⌈�*-.�⌉ ∙ #� + "� .
Here, �� is the maximal bit length of "�, and #� is a random
number picked up by ��, of which the bit size �3 is
determined in terms of the difficulty of exhaustive search for
decrypting an encrypted number. The maximal bit size of ��
is denoted as l, i.e. �� < 2� . In summation for instance, this
means that the sum of all the n randomised values �� meets
condition (a) which has been defined earlier, i.e. ∑ ����56 <2�
 < �.
We now present how �� generates its encrypted data to be
sent to CS, which is different from the work in [21]. �� first
does the following calculations: 7� = (�� + ��̅��) mod .
Here, 7� is the encrypted data of ��, and ��̅ is a random
number picked up by �� and will be further explained in the

621

security flaw section. Briefly, the reason to include �̅	 in the
encryption procedure is to enhance the security of the
plaintext data. This is because the plaintext size is too small if
compared to the symmetric key. Based on this reason, some
information about the key can be retrieved from the
encrypted data. Thus, by including such a random number �̅
during the encryption, it will hide the information about the
symmetric key as the encrypted data will be totally different
from the key for encryption.
After the completion of the above calculation, �� sends 7� to
CS for storing and computing purposes. Upon the receipt of 7� from ��, CS starts to do the computation on the ciphertexts
received to generate a result based on functions �, � or ℎ
requested by DC.
C. Data Recovery
DC decrypts 7� with master keys p and r to recover the value �� by: �� = (7� mod �) mod �.
This is due to the following relationships: �� = (7� mod �) mod �

= 89(�� + ��̅��) mod : ;>" �? ;>" �

= @A8�� + ��̅9(��� + ���):? mod ��B ;>" �C ;>" �

= 9(�� + ��̅��� + �D) ;>" �: ;>" �= (�� + ��̅���) ;>" � as ���̅�� < � with D < �= �� as �� < �
After the successful decryption, DC recovers the plaintext by
calculating the following result: "� = �� mod 2�%&⌈�*-.�⌉.
The above equation is true based on the following reason: "� = �� mod 2�%&⌈�*-.�⌉. = 92E&⌈�*-.�⌉#� + "� : mod 2�%&⌈�*-.�⌉

= "� as "� < mod 2�%&⌈�*-.�⌉
D. Data Evaluation
In this sub-section, we describe how CS computes the
received data using addition and multiplication without the
need for decryption. Once the computation on ciphertext
completed, the encrypted result will be sent to DC for
decryption to recover the plaintext result. The following are
the steps of addition and multiplication together with the
reason of getting a correct result of computing ciphertext
data. Furthermore, in this sub-section we show how the
scheme supports homomorphism under addition and
multiplication. The homomorphism can be defined as
follows:
Definition 1: A function �: G → I from one group G to
another group I is a (group) homomorphism if the group
operation is preserved in the sense that �(�6 ∗J ��) = �(�6) ∗K �(��)
1) Summation

Suppose �(�6, ��, … ��) = ∑ ����56 , i.e. the summation of ��
for 1 ≤ 	 ≤
. Then, the summation on the ciphertext is
defined as below: �(76, 7�, … , 7�) = ∑ 7���56 ;>"

The randomised result can be obtained by the following
computation: ∑ ����56 = (�(76, 7�, … , 7�) ;>" �) ;>" �
This is because of the following relationships: ∑ ����56 = (�(76, 7�, … , 7�) ;>" �) ;>" � = (((∑ 7���56) ;>") ;>" �) ;>" �
= 89∑ 9(�� + ��̅��) mod :��56 :;>" �? ;>" �

= 89(∑ ����56 + ∑ ��̅����56) ;>" :;>" �? ;>" �
=
89(∑ ����56 + ∑ ��̅(��� + ���)��56) ;>" ��: ;>" �? ;>" �
= 9(∑ ����56 + ∑ ��̅��� + �D′��56) ;>" �:;>" �
= (∑ ����56 + ∑ ��̅�����56) ;>" � = ∑ ����56 .
Here, we have (∑ ��̅���) mod �� = �D′��56 with D′ < �.
Also the above fact is based on the following connections
derived from conditions (a) 2�
 < � and (b) ��(��̅, ��) < �: ∑ ����56 < 2�
 < �, ∑ ����56 + � ∑ ��̅�� <��56 ��(��̅ , ��) < �,

and ∑ ����56 + � ∑ ��̅����56 + �D′ < ��.
To obtain the plaintext result, the computation is as follows: ∑ "���56 = (∑ ����56) mod 2�%&⌈�*-.�⌉

 = (∑ (2�%&⌈�*-.�⌉#� + "�)��56) mod 2�%&⌈�*-.�⌉
 = ∑ "���56 as ∑ "���56 < 2�%&⌈�*-.�⌉ .

2) Product
Suppose �(�6, ��, … ��) = ∏ ����56 , i.e. the product of �� for 1 ≤ 	 ≤
. Then, the product on the ciphertext is defined as
below: �(76, 7�, … , 7�) = ∏ 7���56 ;>"
The product of randomised data can be obtained by the
following computation: ∏ ����56 = (�(76, 7�, … , 7�) ;>" �) ;>" �
This is because of the following relationships: ∏ ����56 = (�(76, 7�, … , 7�) ;>" �) ;>" �

= 89(∏ 7���56) ;>" : ;>" �? ;>" �
= 9((∏ (�� + ��̅��))��56 mod) ;>" �: ;>" �
= 89((∏ ����56) + �N̅ + �O�) ;>" : ;>" �? ;>" �
= 9((∏ ����56) + �N̅ + �D") ;>" �:;>" �
= ((∏ ��)��56 + �N̅) ;>" � = ∏ ����56 .

Here, we have N̅ = ℎ(�Q,R ��, �, ��) and O� = ℎ(�Q,R ��, �, ��, �, ��).
We also have (�O�) mod �� = �D" with D" < �. Also the
above fact is based on the following connections derived
from conditions (2�)� < � and �ℎ(�Q,R ��, �, ��) < � . To
obtain the plaintext result, the computation is as follows: ∏ "���56 = (∏ ����56) mod 2�%&⌈�*-.�⌉

= (∏ (2�%&⌈�*-.�⌉#� + "�)��56) mod 2�%&⌈�*-.�⌉
= ∏ "���56 as ∏ "���56 < 2�%&⌈�*-.�⌉

Based on Definition 1, the scheme is said to be homomorphic
under addition and multiplication operations as long as both
of the stated conditions i.e. (a) and (b) are satisfied.

V. SECURITY ANALYSIS

In this section, we provide an analysis on securing the
scheme by considering several attacks to show that our
scheme is secure enough against such attacks. Due to the
space limit, we have only selected two types of attack on the

622

keys, brute force attack on the master key and brute force
attack on the symmetric key.

A. Brute Force Attack on the Master Key, (�, �)
By using our scheme to encrypt the data, this attack on the
ciphertext can be formulised as follows. DC sends a request
to the contributor group. Suppose several attackers are
members of the group. The attackers pretend to have the data
related to the request and will let DC knows about it. As DC
is not able to differentiate the attackers from other genuine
contributors, it will send a symmetric key to each attacker for
data encryption. Having received the keys from DC, the
attackers start the computation of deducing DC’s master keys � and �. They subtract one key from another, hoping to
remove �. If � were removed, the attackers could compute the
Greatest Common Divisor (GCD) of the reminder with the
public value . By doing this, master key � would be
discovered by the attackers, which could then be used to
work out � in a similar way.

We now present the above attack in detail. Having
received the set of symmetric keys from DC, the attackers
start the computation of recovering the master keys as
follows:

Suppose that S6 and S� are attackers with received keys �′6 and �′� in the following form: �′6 = (� + ��6) ;>" �′� = (� + ���) ;>" S6 and S� then subtract both keys: �� = �′6 − �′� = 9(� + ��6) − (� + ���): ;>"
 = 9�(�6 − ��): ;>"

To determine the master key �, they compute the GCD of the
following values:

GCD 9��, : = �
This is due to the following relationships:

GCD 9��, : = GCD (�(�6 − ��), ��) = �
Furthermore, the attacker can retrieve the value of � by
computing �′6;>" � = �.
After the completion of the above steps, the attackers obtain
the master keys (�, �) generated by DC. If they can intercept
the communication between another group member �� and
CS or CS and DC, then they can gain the information of the
encrypted data as they have the decryption key.

To prevent such an attack, we attach a random parameter �� to � in the definition of our keys �� to avoid the above
elimination of � when the attackers subtract two distinct keys
they received from DC. This can be seen by repeating the
elimination process as follows: �6 = (��6 + ��6) ;>" �� = (��� + ���) ;>"
If S6 and S� subtract both keys:

�′R = �6 − �� = 9(��6 + ��6) − (��� + ���): ;>"
 = 9�(�6 − ��) + �(�6 − ��): ;>"

Now master key � cannot be retrieved by computing GCD
9�′R , : due to ��′ being no longer a multiple of �, i.e.

GCD 9�′R , : = GCD (�(�6 − �6) + �(�6 − ��), ��) ≠ �
However, according to [22], such improvement allows known
attacks like brute-forcing the remainders on the approximate-
GCD problem. Thus, we review such an attack for two keys

�6 and ��.
A simple brute-force attack is try to guess �̌6 = ��6 and �̌� = ��� and verify the guess with a GCD computation.
Specifically, for two correctly guessed values �̌6� and �̌�� of �̌6
and �̌� respectively (i.e. �̌6� = �̌6 and �̌�� = �̌�), compute: �6" = (�6 − �̌6�) ;>" ��" = (�� − �̌��) ;>"
Therefore, � can be computed by:

GCD 9�6" , ��" : = �
This is true based on the following relationships:

GCD (�6� , ���) = GCD 9(�6 − �̌6�), (�� − �̌��):
= GCD 89(�̌6 + ��6) − �̌6�:, 9(�̌� + ���) − �̌��:?
= GCD (��6, ���)= �
Therefore, to avoid the brute-force attack on the

remainder, the length of �̌6 (or �̌�) should be large enough but
must be smaller than � to allow the recovery of the plaintext
data during the decryption.

B. Brute Force Attack on the Symmetric Key, ��
To prevent the scheme from brute force attack on a
symmetric key, a random parameter �QR is added to the
ciphertext. Such a parameter can improve the security of the
encrypted data by avoiding any information about the
encryption key being disclosed to unauthorised users. This
means that based on given public parameters such as the
ciphertext data and , an attacker, which has some
knowledge about the plaintext, is unable to retrieve useful
information for successfully guessing an encryption key.
We now argue the above claim in detail. Suppose that the
encryption algorithm for plaintext �� with symmetric key ��
is: 7′� = (�� + ��) ;>" .
Such an encryption algorithm is said to be unsecured against
a brute-force attack on �� based on the following reason.

As mentioned earlier, ��̅ is added in our encryption
algorithm for security purposes. The main reason is to hide
the key information from the attacker and even a curious CS.
For recovering purposes, the key should be large, i.e. �>��(�("�)) ≪ �>��(��) for every 	
where, � is the summation of "� and �� is the symmetric key
for encrypting "�.
Since �� = (��� + ���) ;>" , we have: �>��(��) = �>��().
Furthermore, as 7′� = (�� + ��) ;>" , this leads to: �>��(7�) = �>��(��) = �>��().
Based on the above relationships, we can see that when the
plaintext is very small compared to the key used for
encryption, the size of the ciphertext generated is almost
identical to the key size. This means that for different
encryptions with the same key, the difference among them is
just the bits at the lower end of the ciphertexts, while the rest
remains the same, which is the higher end of the key. In case
the attacker is able to obtain the ciphertexts, it can compare
them to spot their identical part so as to gain that part of the
key. If the remaining part of the key is short, then the attacker
can guess it by a brute force attack.

Such a weakness can be avoided by adding a random
parameter ��̅ to the encryption as devised in our algorithm:

623

7� = (�� + ��̅��) ;>"
Here ��̅ is only known by the encryptor. By adding such a
parameter, each ciphertext will be a different number which
does not directly leakage any information about the
symmetric key.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the total execution time of the
LHE scheme and a chosen scheme for a comparison. These
results demonstrate the importance of a lightweight
homomorphic encryption scheme in terms of its efficiency.

A. Experimental Setup
In our total execution time tests, we evaluate the total
execution time of the two schemes (the LHE and the
compared scheme) for several phases like data randomisation
and data encryption. The details of the compared scheme can
be found in [23]. We implemented the two schemes with
various numbers of data distributors. The evaluation is
implemented using Matlab software.

B. Parameters Setting
In this experiment, we use the parameter settings defined

in TABLE 1. Note that although the table only includes the
three entities (i.e. DC, �� and CS), the ‘Not Know’ column
also covers any other entities apart from the two empty
entries.

C. Experimental Results
The experimental results are shown in TABLE 2 and Fig. 2 –
5 for the LHE and the compared schemes.

Our first experiment is about the total execution time for
data randomisation, encryption and decryption. As expected,
the LHE scheme is faster than the compared scheme as the
computation complexity of the compared scheme is higher
than that of the LHE scheme. The result of the comparison is
shown in TABLE 2.

TABLE 1. THE PARAMETER SETTINGS AND SECURITY REQUIREMENTS

Para. Descriptions Length
in bits

Who should
Know Not

� A part of master key 512 DC ��, CS
� A part of master key 256 DC ��, CS
� A value chosen by DC 512 DC ��, CS
"� A plaintext 10 �� CS, DC
�� A randomised plaintext 177 �� CS, DC
#� A random integer 160 �� CS, DC
�QR A random integer 184 �� CS, DC
�� A random integer 54 DC �� , CS
�� A random integer 1024 DC ��, CS
 A public number 1024 All
�� A symmetric key 1024 ��, DC CS
7� A ciphertext 1024 All

TABLE 2: TOTAL DELAY FOR DATA RANDOMISATION, ENCRYPTION AND
DECRYPTION

Tasks Delay in Seconds
The LHE Scheme The Compared Scheme

Data Randomisation 0.1751 0.1751
Data Encryption 0.1053 205.8911
Data Decryption 0.3158 144.866

Figure 2. Total execution time for generating symmetric keys by a DC

Figure 3. Total execution time for summation in the ciphertext form by CS

Figure 4. Total execution time for data summation and product in the
ciphertext form by CS

Figure 5. Total execution time for one round data processing (based on the
designed protocol in Fig. 1) in the ciphertext form

Furthermore, we evaluated the total execution time of key
generation for both of the schemes with different numbers of
contributors. The result is given in Fig. 2, showing that the

50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600
Total Execution Time for Generating Symmetric Keys by a Server

Number of Data Distributors

De
la

y i
n

Se
co

nd
s

LHE Scheme

The Compared Scheme

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7
Total Execution Time for Data Summation in Ciphertexts Form

Number of Data Distributors

De
la

y i
n

Se
co

nd
s

LHE Scheme
The Compared Method

50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

Number of Data Distributors

De
la

y i
n

Se
co

nd
s

Total Execution Time for Data Processing in Ciphertext Form

LHE Scheme, SUM
The Compared Method, SUM
LHE Scheme, PROD

50 100 150 200 250 300 350 400
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Number of Data Distributors

De
la

y i
n

Se
co

nd
s

Total Execution Time for One Round Data Procesing in Ciphertext Form

LHE Scheme

The Compared Scheme

624

delay caused by using the LHE scheme is slightly increased
in response to the increase of the number of contributors. In
contrast, the delay rapidly increases using the compared
scheme in the same circumstances. Moreover, we can see that
there is a significant difference between these two schemes
for generating keys. For 50 contributors, the key generation
by LHE takes less than one second, whereas the other scheme
takes much longer time, which is 200 seconds. Moreover, the
graph also shows that as the number of contributors
increases, the delay of generating the keys constantly
increases with 200 seconds difference between the two
schemes.

Fig. 3 provides the delay of data summation on the
ciphertexts using the two different encryption schemes. The
graph shows the delay produced using LHE gradually
increases as the number of contributors increases. However,
for the compared scheme, the delay rapidly increases in
relation to the increase of contributors. For example, when
the number of contributors is 400, the delay caused by LHE
is below 0.5 second. For the compared scheme, the process
takes longer time, which is more than 6 seconds.

In Fig. 4, we can see the delay of product on ciphertext
data encrypted using LHE. It gradually rises according to the
rise of the number of contributors, but it is still acceptable
and below the delay produced by the compared scheme for
ciphertext summation. For 400 contributors, the product of
ciphertexts using LHE takes about 4 seconds, which is below
the delay of data summation using the compared scheme that
takes more than 6 seconds.

Fig. 5 shows the delay of the two schemes in one round
of data summation over ciphertext data. The one round
process is a process based on the designed protocol depicted
in Fig. 1, where three parties communicate with one another
to process data in the encrypted form. The graph obviously
demonstrates the significant difference of the delay between
the two schemes. For instance, for 400 contributors, the
process takes almost 2000 seconds using the compared
scheme to complete the process, while LHE only takes less
than 10 seconds. This result shows that LHE enables data
processing in the ciphertext form much more efficiently.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the new Lightweight
Homomorphic Encryption (LHE) scheme that allows mobile
users to outsource their data in a secure and privacy-
preserved manner. Moreover, the scheme enables ciphertext
data to be processed under both addition and multiplication
operations without decryption. We have compared LHE with
another related scheme through the experiments that have
been developed using Matlab software. Our effort is mainly
focused on the evaluation of the total execution time of the
two schemes by providing comprehensive comparisons
between them. The results show that LHE can operate faster
than the compared scheme as it has less complexity in terms
of computation. Furthermore, we have also provided a
security analysis of LHE to show that although the scheme
has less complexity, it can provide strong security to the
outsourced data. Such a result has proved that our scheme can
be implemented to provide strong security to protect mobile
data.

REFERENCES

[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A Survey of Mobile
Cloud Computing : Architecture , Applications , and Approaches,”
Wireless Communications and Mobile Computing, no. 13, pp. 1587–
1611, 2013.

[2] S. Singh and I. Chana, “Cloud Based Development Issues : A
Methodical Analysis,” International Journal of Cloud Computing and
Services Science, vol. 2, no. 1, pp. 73–84, 2013.

[3] K. Nahrstedt, R. Campbell, E. Burger, J. Giffin, X. H. Gu, A. D.
Joseph, E. Keller, D. Ma, and H. Weatherspoon, “Security for Cloud
Computing,” in A Report: Directorate for Computer and Information
Science and Engineering (CISE), pp. 1–19, 2012.

[4] D. Zissis and D. Lekkas, “Addressing cloud computing security
issues,” Future Generation Computer Systems, vol. 28, no. 3, pp. 583–
592, Mar. 2012.

[5] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of Network and
Computer Applications, vol. 34, no. 1, pp. 1–11, Jan. 2011.

[6] Z. Mahmood, “Data Location and Security Issues in Cloud
Computing,” 2011 International Conference on Emerging Intelligent
Data and Web Technologies, pp. 49–54, Sep. 2011

[7] C. Gentry and N. P. Smart, “Homomorphic Evaluation of the AES
Circuit,” Adv. Cryptol. - CRYPTO 2012. Lecture Notes Computer
Science, vol. 7417, pp. 850–867, 2012.

[8] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” IACR Cryptology ePrint Archive, 2012.

[9] D. Boneh, “Evaluating 2-DNF Formulas on Ciphertexts,” in Second
Theory of Cryptography Conference, TCC 2005, Cambridge
Proceedings, 2005, pp. 325–341.

[10] M. Tibouchi, “Scale-Invariant Fully Homomorphic Encryption over
the Integers,” Cryptology ePrint Archive 2014/032, pp. 1–18, 2014.

[11] H. Zhou and G. Wornell, “Efficient homomorphic encryption on
integer vectors and its applications,” 2014 Information Theory
Application Workshop ITA 2014 - Conference Proceeding, 2014.

[12] R. P. Rudenko A., “Saving Portable Computer Battery Power through
Remote Process Execution,” Mobile Computing and Communication
Review, vol. 2, no I, pp. 19–26, 1998.

[13] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer System, vol. 29, no. 1, pp.
84–106, 2013.

[14] K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users: Can
Offloading Save Energy?,” IEEE Computer, pp. 51–56, 2010.

[15] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. a. Madani, “Towards
secure mobile cloud computing: A survey,” Future Generation
Computer System, vol. 29, no. 5, pp. 1278–1299, 2012.

[16] A. Boldyreva, G. Tech, P. Grubbs, and S. Networks, “Making
encryption work in the cloud,” Network Security, vol. 2014, no. 10,
pp. 8–10, 2014.

[17] W. Itani, A. Kayssi, and A. Chehab, “Energy-efficient incremental
integrity for securing storage in mobile cloud computing,” 2010
International Conference on Energy Aware Computing, ICEAC 2010,
pp. 26–27, 2010.

[18] W. Jia, H. Zhu, Z. Cao, L. Wei, and X. Lin, “SDSM : A Secure Data
Service Mechanism in Mobile Cloud Computing,” The First
International Workshop on Security in Computers, Networking and
Communications, pp. 1060–1065, 2011.

[19] S. C. Hsueh, J. Y. Lin, and M. Y. Lin, “Secure cloud storage for
convenient data archive of smart phones,” Proceedings of the
International Symposium on Consumer Electronics, ISCE, vol. 18, no.
51, pp. 156–161, 2011.

[20] G. Ateniese, “Verifiable encryption of digital signatures and
applications,” ACM Transactions on Information and System Security,
vol. 7, no. 1, pp. 1–20, Feb. 2004.

[21] R. Zhang, J. Shi, Y. Zhang, and C. Zhang, “Verifiable Privacy-
Preserving Aggregation in People-Centric Urban Sensing Systems,”
IEEE Journal on Selected Areas in Communications, vol. 31, no. 9,
pp. 268–278, 2013.

[22] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
Homomorphic Encryption over the Integers.” IACR Cryptology ePrint
Archive, pp. 1-28, 2010

[23] M. R. Baharon, Q. Shi, D. Llewellyn-Jones, and M. Merabti, “Secure
rendering process in cloud computing,” 2013 11th Annual Conference
on Privacy, Security and Trust, PST 2013, pp. 82–87, 2013.

625

