
Compose Technical Manual

Contents
Contents 1
Overview 1
Licence 2
Introduction 2
General information 2
Component directory structure 3
Compose file format description 4
Wimp messages 5

Link_Control 6
Link_Open 7
Link_Close 8
Link_Send 8
Link_DataSave 9
Link_RAMFetch 9
Link_RAMTransmit 10

Transferring data 10
Writing components using C 11
Functions that can be called 11

void LinkSend (int nLink, char * pcData, int nSize) 11
void LinkOpen (int nLink) 12
void LinkClose (int nLink) 12

Placeholder functions to add code into 12
void ActOnInit (void) 12
void ActOnConfig (void) 12
void ActOnConfigSave (MemFile * psMemFile) 12
void ActOnConfigLoad (MemFile * psMemFile, int nSection) 12
void ActOnLinkOpen (int nLink) 13
void ActOnLinkClose (int nLink) 13
void ActOnLinkSend (int nLink, char * pcData, int nSize) 13
void ActOnLinkSent (int nLink) 13

Compiling the code 13
Turing Complete 13

Overview
Compose is a visual programming language that uses hyper-pipes between applications to
allow componentised applications to be built graphically.

Various components are available to be used with the main Compose application. These
components are specially designed applications in their own right. To create a program,
components are dragged onto the Compose canvas where they appear as icons. They can be
moved around the canvas, and links can be created between components that allow one
component to transfer data to another component. Data transfer works in a very similar way
to Unix pipes, except that whilst pipes are 1-dimensional, in Compose there can be many
links between components. Compose applications are therefore built up by dragging links
between components on the two dimensional canvas.

Once components have been linked on the Compose canvas, the whole application can be

1

executed as if it is one program. The Compose application then works as an intermediary to
the other components to martial data and send control messages to the components.

Compose is open source software with an MIT style licence.

Licence
Copyright (c) 2005 David Llewellyn-Jones

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Introduction
This manual contains technical information about Compose that may be useful for
developers who wish to create new Compose components. None of this information is
needed for those that simply want to use Compose and the existing components to create
applications.

Compose components communicate using wimp messages. The bulk of this manual is
therefore devoted to describing these. However, there are also other details that are needed
to create a component, such as the additional structure imposed on the application directory
of the component.

Towards the end of the manual there is a short description of how to use the existing
components coded in C as a shell for developing new components.

Although all of the current components are coded in C, any language that supports the
creation of wimp applications and that allows access to the sending and receiving of wimp
messages can be used to create Compose components. Thus C, BASIC and ARM assembler
are all suitable languages and most other RISC OS languages should be okay too.

General information
The following details about compose have been assigned:

Application name: !Compose

Application directory: <Compose$Dir>

Message block: from &58080 (further details below)

Component application directories: <Comp*$Dir >(where * is the name of the component)

Filetype: &1bf; ComProg (further details below)

2

Component directory structure
Each component should be contained in a single application directory. The structure has all
of the aspects of a standard application directory (e.g. !Boot, !Run, !Sprites, !RunImageetc.)
along with a number of required additions.

The !RunComp file is used to launch the component and so must be included. In addition, a
system variable specifying the location of the component on disc is also required (usually of
the form <Comp*$Dir>), which therefore necessitates the presence of a !Boot file to set this
up. The !Run file is not used by Compose, but will obviously be run if the user double clicks
on the application, as with any other application directory.

The additional aspects needed are a Details text file, and a Compose sprite file, both
contained in the root of the application directory. An example of the contents of a
component application directory is shown below.

The contents of a component application directory

The Compose sprite file contains the image that is used when displaying the component in
the main Compose canvas window. It should contain just one sprite with the name
‘compose’. There is no maximum size for this sprite, but around 100� 100 pixels is
reasonable.

The Details text file contains important information about the component. Without this file
the component will not be recognised by the Compose application as being a component.
When a component is dragged onto the Compose canvas, this file is read to identify and
obtain details about the component. The file should be formatted along the following lines:

[Component]
Name : Buffer
Dir : <CompBuffer$Dir>
LinksOut : 1
LinksIn : 1

[Info]
Component : Temporarily holds data before sending it on

[Links out]
0 : Data from the buffer

[Links in]
0 : Data to be held in buffer

The file is initialised with a line containing only the heading [Compose]. This is directly

3

followed by four mandatory variable value pairs. Each on a separate line, with variable and
values separated by a colon. The four variables are Name, Dir, LinksOut, and LinksIn.
These stipulate the name of the component, the system variable used to identify the
component’s application directory, the number of output links the component has and the
number of input links the component has respectively.

This is followed by two further sections. These are the [Links Out] and the [Links In]
sections.

The [Links Out] section should contain one variable for each of the output links of the
component. These are numbered starting at zero and the value of each must be a short line
of text describing the data or information that will be output along the link.

Similarly the [Links In] section should contain one variable for each of the input links of the
component. These are also numbered starting at zero and the value of each must be a short
line of text describing the type of data or information that is expected to be received along
the link.

Compose file format description
The Compose application allows you to save configurations of components for future use,
and load them back in again at a later date. In creating a component it isn’t really necessary
to know how the structure of this file works, but it may none the less be of interest to
component developers. This section therefore provides a very brief description of the file
format, which has the registered type &1bf, or ComProg.

The Compose file format is structured using sections and variable values, in roughly human
readable (text) form.

The file is comprised of sections, with each section containing a number of variables with
their specified values, which can be either strings, or numbers (in text format).

Each section is delineated by the name of the section in square brackets. The variables
associated with each section follow on linearly from this, separated by linefeeds. Each line
should contain a variable followed by the value associated with the variable, the two being
separated by a colon.

An example section might look as follow.

[Section title]
Var1 : 100
Var2 : Some text
Var3 : 0

A compose file must contain two compulsory sections, followed by a number of optional
sections.

Other sections may be added at a later date, but they will conform to the above format.

The first compulsory section should have the title “Components” and should contain the
variable “Num”, followed by a number of pairs of optional variables with names “0D”,
“0P”, “1D”, “1P”, “2D”, “2P”, etc.

The second compulsory section should have the title “Links” and should contain the
variable “Num”, followed by a number of optional variables with the names “0”, “1”, “2”,
etc.

Both of these sections may have other variables added in future versions of the file format.

4

The optional sections that follow should have the titles “Component 0”, “Component 1”,
“Component 2”, etc. Each of these sections is associated with the configuration of a
component and the names and values of the variables contained in each section will be
dependent on the component in question.

Future versions of the file may change to work similarly, but based on an XML format.

An example file follows.

[Components]
Num : 4
0D : <CompTextView$Dir>
0P : 1073,-584
1D : <CompTextView$Dir>
1P : 1053,-358
2D : <CompServer$Dir>
2P : 666,-418
3D : <CompKeyboard$Dir>
3P : 258,-552

[Links]
Num : 3
0 : 2-0 -> 1-0
1 : 3-0 -> 0-0
2 : 3-0 -> 2-0

[Component 0]
Concat : 1
Special : 1
Mouse : 0
Warn : 0
Size : 20480

[Component 1]
Concat : 1
Special : 1
Mouse : 0
Warn : 0
Size : 20480

[Component 2]
Port : 6420

[Component 3]
Individ : 1

Wimp messages
The process of a component transferring or receiving data across a link makes use of wimp
messages. The usual format is that a link is opened, data is transferred until the transfer is
complete, possibly requiring multiple transfers and messages, and then the link is closed.

A link will often remain open for multiple wimp polls, possibly even for the entire time that
a component application is running. There is no maximum or minimum length of time that a
link may remain open.

Whilst a link is open, there are two ways in which data can be sent. If only a small amount

5

of data (224 bytes or less) needs to be sent, a Link_Send message can be used (see below).
This is by far the simplest method, and avoids some of the awkward timing issues involved
with using the Link_DataSave-RAMFetch-RAMTransmit message cycle discussed below.
A component that wishes to send data need only support the Link_Send method if it so
wishes. However, a component that wishes to receive data must support both methods for
receiving data. All of this will be discussed in more detail later on.

The Compose specific wimp messages are as follows.

Message name Message number

Link_Control &58080

Link_Open &58081

Link_Close &58082

Link_Send &58083

Link_DataSave &58084

Link_RAMFetch &58085

Link_RAMTransmit &58086

We will now provide a more detailed description of each of these messages.

The following wimp messages are used by components and the Compose application to
communicate with each other. For each message, two descriptions are provided. One,
indicated by ‘Send’ is taken from the point of view of a component that may want to send
the message. The other, indicated by ‘Receive’ is taken from the point of view of a
component that may be receiving the message. The two will essentially be equivalent
descriptions, just taken from opposing viewpoints. Hopefully this will serve to make clear
exactly what each message should be used for.

Link_Control &58080
+20 handle
+24 action: 0=init

1=config
2=save config
3=load config

+28� further data depending on the action

Send This message is only ever sent by the main Compose application, never by a
component. Therefore only receipt of this message need be implemented by
components.

Receive This is a general purpose message that allows the main Compose application
to communicate with components. It’s purpose depends on the value of the
action word (+24).

Action 0 (init) This is sent to a component to warn it that execution is about to begin.
The receiving component must take a note of the link handle (+20) and the
task handle of the sending task (+4), which will be the task handle of the
Compose application. All future messages must use this same link handle,

6

since this is a reference used by the main Compose application

Although communication appears to occur between components, in fact each
component only needs to be aware of the main Compose application and the
component’s own input and output links. All messages are in fact sent and
received only between a component and the main Compose application. The
Compose application subsequently ensures that any messages are forwarded
to the correct component. The component must therefore retain the task
handle (+4) obtained from the init message, since all future communication
must be addressed to this task and will be received from it.

Action 1 (config) This message is sent to signify that the component should open its
configuration window.

Action 2 (save config)

+28 filename to append configuration data to (null terminated)
This signifies that a component should append its current configuration to the
file indicated. The configuration must be in the following format.

[Component <handle>]
<var 1> : <value 1>
<var 2> : <value 2>
etc.

In the above, <handle> is the link handle (+20), the <var n>s indicate variable
names (which can be any alphanumeric string) and the <value n>s indicate
their associated values (which should also be in string format). The following
is an example of this format.

[Component 3]
Precision : 32
Radix : 1
Size : 224

See the section on the Compose file format for further details.

Action 3 (load config)

+28 filename to load the configuration data from (null terminated)
The component should scan the file indicated to find the section headed by the
line [Component <handle>] where <handle> is the link handle (+20). It should
then read off any values it requires from this section and apply these
configurations accordingly.

The component should give an error if the file does not exist. However it is
not an error if the section does not exist within the file, or if the component
cannot find a particular configuration variable that it expects.

Link_Open &58081
+20 handle
+24 link number

7

Send This should be sent to the main Compose application when a component
wishes to open one of its output links for communication. The component
should specify which link it wants to open using the link number field (+24).

Receive This is received by a component when one of its inputs links is opened by
another component. The component receiving this message should ready itself
for incoming data on the link, for example by assigning buffers and so on. If
the link is already open, a component should either close and reopen the link,
or ignore the message. It is an error if a component receives this message for a
link that does not exist.

Link_Close &58082
+20 handle
+24 link number

Send This should be sent when communication on a particular link has been
completed. For example, if sending a file across a link, a component would
first open the link, send the file and then might close the link by sending this
message to the main Compose application.

Receive When received this signifies that the data being transferred to the component
across the link is complete. This may be used as a prompt for the component
to take a particular action, such as processing the buffered data that was
received on the link, or releasing the allocated buffer memory for the link. If a
component receives a close message for a link that is not open, it may ignore
it, or produce an error. It is an error if it receives such a message for a link that
does not exist.

Link_Send &58083
+20 handle
+24 link number
+28 size
+32 � data

Send This message is used to transfer small quantities of data across a link (less
than 224 bytes). The sender should fill out the size of the data (+28) and then
attach the data to the end of the message in the remaining space (+32 � +256)
as necessary. The data does not need to be null terminated since its size is
given. Data should only be sent on a link that has previously been opened
using a Link_Open message (see earlier).

If desired, it is perfectly acceptable for a component to use this method to
send all of its data, as long as it can be sent in small chunks. However, if it
needs to send data in larger chunks, the component should use the
Link_DataSave-RAMFetch-RAMTransmit cycle discussed below. Although
this is more complicated, using such a cycle is also likely to be quicker and
more efficient.

8

Receive When received the receiving component should act on the data, for example
by processing it or storing it in a buffer for later processing. If received for a
link that is not open, the receiving component may error, but ideally is should
act as if the link had just been opened and receive the data without error.
Every component that has incoming links must be capable of accepting data in
this manner.

Link_DataSave &58084
+20 handle
+24 link number
+28 size

Send This is sent by a component if it wishes to send data on a particular link that is
larger than the 224 byte maximum allowed using the Link_Send message
described above. The Link_DataSave message usually forms the start of a
Link_DataSave-RAMFetch-RAMTransmit cycle. The size field (+28)
indicates the total size of data that the component wishes to send in this
particular transfer (this does not have to be the total amount of data sent on a
link between the Link_Open and Link_Close messages, which is never
explicitly specified). After sending this message, a component should expect a
Link_RAMFetch message in response. If for whatever reason a component
does not respond in this way, failure is likely to be silent. If a component
needs to know when a Link_DataSave message fails, it should therefore send
it recorded.

Receive When received this message is an indication to a component that some other
component (although it may even be itself) wishes to send data to it on a
particular link. If the component is able to receive the data, it should set aside
some buffer space to receive the data and respond immediately with a
Link_RAMFetch message (see below). Note that although the size field (+28)
indicates the amount of data that will be received, the buffer does not have to
be large enough to accommodate the data all in one go. If the buffer is smaller
than the size of the data, several Link_RAMFetch-RAMTransmit cycles will
ensue.

Link_RAMFetch &58085
+20 handle
+24 link number
+28 pointer to buffer where receiver should put data
+32 size of buffer

Send This is sent by a component in response to either a Link_DataSave, or a
Link_RAMTransmit message. It can be translated to mean “ready to receive
data.” The buffer pointer (+28) should be set to a pointer to a buffer that the
component sending this message is willing to receive data into.

Receive When received by a component that wants to send data on a link, this can be
interpreted as a signal from the component that sent it that it is ready to

9

receive data on the link. The component receiving this message will already
have sent a Link_DataSave message earlier. It should respond by transferring
the data it wishes to send into the buffer stipulated (+28) using a call to
Wimp_TransferBlock, with the task handle from the message (+4) as the
destination task for the call. Having done this, the task should respond
immediately with a Link_RAMTransmit message (see below) to indicate that
the data was transferred.

If the data to be transferred is larger than the size of the buffer, as much data
as possible should be transferred without exceeding the size of the buffer.

If the data is larger or precisely equal to the size of the buffer, the component
receiving the data will send further Link_RAMTFetch messages to obtain the
remainder of the data.

Link_RAMTransmit &58086
+20 handle
+24 link number
+28 pointer to buffer from RAMFetch message
+32 amount of data written

Send This is sent in response to a Link_RAMFetch message to indicate that data
has been transferred into the receiver’s buffer. The amount of data that has
been written to the buffer should be indicated (+32). If the buffer is full, this
should be set equal to the size of the buffer. If the amount sent (+32) is less
than the size of the receiver’s buffer (as stipulated in the previous
Link_RAMFetch message), this signifies the end of the transfer. If it is equal,
a further Link_RAMFetch message should be expected. In particular, if on a
previous occasion the total data sent was exactly the same size as the buffer
and there is no more data to send, the component should respond with a
Link_RAMTransmit message with the amount transferred (+32) set to 0.

Receive When received this message means that data has been written to the
component’s buffer. The component should deal with the data however it
needs to. If the size of the data sent (+32) is equal to the size of the
component’s buffer (as stipulated by an earlier Link_DataSave message) then
this signifies that there is more data to be sent. In this case the component
should therefore respond with a further Link_RAMFetch message (see above).
As a result of this, a component should be ready to accept a
Link_RAMTransmit message with the amount sent (+32) set to 0.

Transferring data
From the above we can see that a full Link_DataSave-RAMFetch-RAMTransmit transfer
cycle might require messages as follows, where component A is sending data on a link to
component B.

10

A BLink_DataSave

Link_RAMFetch

Link_RAMTransmit

(with amount sent < size of buffer)

Link_RAMFetch

Link_RAMTransmit

Link_RAMFetch

Link_RAMTransmit

A Link_DataSave-RAMFetch-RAMTransmit transfer cycle

Note that such a transfer may take multiple wimp polls. Consequently it is not possible to
send multiple Link_DataSave messages within one wimp poll and expect the ordering of the
data sent to be retained. However, as a result of the way the wimp works, a component will
not receive null wimp polls across a single transfer that may require multiple messages
(since wimp messages take a higher priority than wimp polls). A simple way to ensure data
is received in the order it was sent in is therefore to buffer data and send it only on null
wimp polls.

The need to do this arises due to the nature of large data transfers, which require multiple
messages to be passed between components for a single transfer of data. If Link_Send is the
only means a component uses to send data, this restriction therefore does not apply.
However, for larger quantities of data, the Link_DataSave-RAMFetch-RAMTransmit cycle
is more efficient and its use is therefore encouraged.

Writing components using C
Writing components using C can be achieved more easily by using one of the example
components provided as a template, as compared to starting from scratch. The simplest
example is the Buffer component. Important declarations for this can be found in the
Compose.h.General header file. There are a number of particularly useful functions that can
be found in the c.Buffer source file, and these are detailed below.

Functions that can be called
The following functions can be called to achieve various results. They basically act as
wrappers around the sending of messages.

void LinkSend (int nLink, char * pcData, int nSize)
Use this to send data. This is set up to use either a Link_Send message, or a
Link_DataSave-RAMFetch-RAMTransmit cycle depending on the size of data that is

11

passed in to the function. Using this function means that the component creator does not
have to worry about these more intricate aspects of the protocol.

void LinkOpen (int nLink)
Use this to open the specified link.

void LinkClose (int nLink)
Use this to close the specified link.

Placeholder functions to add code into
The following functions are set up so that they will be called when certain events occur.
Primarily they will be called when an appropriate wimp message is received by the
component. These functions are therefore intended as ‘shells’ into which code can be added
to react to certain events.

void ActOnInit (void)
This is called when an init message is received. Code can be added in here to initialise
the component ready for use.

void ActOnConfig (void)
This is called when a config message is received. The usual action that might be added
to this function would be to open the component’s configuration window.

void ActOnConfigSave (MemFile * psMemFile)
Any component-specific configuration should be saved within this function, using the
MemFile routines provided. In its simplest form, a list of calls of the following form
might be added:

SaveDetailMem (psMemFile, “var”, “value”);

void ActOnConfigLoad (MemFile * psMemFile, int nSection)
Component-specific configurations should be loaded within this function. In its simplest
form, a list of calls of the following form might be added:

FindValueMem (psMemFile, nSection, “var”, szValue, sizeof
(szValue));

where szValue is a buffer for a string to be stored into.

12

void ActOnLinkOpen (int nLink)
This will be called when a link is opened. Any code that needs executing to set up a link
ready to receive data (e.g. the allocation of buffers) could be added here.

void ActOnLinkClose (int nLink)
This will be called when a link is closed. Any code that needs executing to tidy up a link
after receiving data (e.g. processing the data or the deallocation of buffers) could be
added here.

void ActOnLinkSend (int nLink, char * pcData, int nSize)
This will be called when a component receives data on a link (in spite of the function’s
name!). The component should do whatever needs to be done with the data, e.g. process
it or store it in a buffer for future processing.

void ActOnLinkSent (int nLink)
This is called to signify that data has been sent. It will only be called after a call to
Link_Send (see above).

Compiling the code
The code can be compiled using GCC. Obey files to compile and link each component and
the main Compose application have been provided. These have been tested using GCC 3.3.3
and also require the StubsG, OSLib and UnixLib libraries.

Turing Complete
A reasonable question to ask might be “is Compose really a programming language?”. In
short, the answer is “Yes”.

To elaborate a little further, it might be possible to argue over whether Compose constitutes
a language, but it can be shown that Compose certainly does represent a form of
programming. To back this up, we would want to show that Compose is Turing complete. In
other words, that it has the same computation power as any other programming language
has.

This claim ought to be shown by providing a formal proof that the language is Turing
complete. At the moment, due to the difficulties of formalising mathematically the way
components are tied together, it is not possible to provide such a proof. Instead, an example
program is included in the download archive that demonstrates a Turing machine written
using the Compose language. This isn’t as robust as providing a formal proof, but should at
least lend some credibility to the claim that the language is indeed a programming language.

There are two example Turing machines supplied. The first, called ‘Turing’ demonstrates a
Turing machine taken from the Wikipedia website at http://en.wikipedia.org/wiki/
Turing_machine. The process for this machine is as follows.

13

Old state Read symbol Write symbol Move New state

s1 1 0 Right s2

s2 1 1 Right s2

s2 0 0 Right s3

s3 0 1 Left s4

s3 1 1 Right s3

s4 1 1 Left s4

s4 0 0 Left s5

s5 0 1 Right s1

The program has been set up to execute the example computation taken from the Wikipedia
site, which should go along the following lines.

Step State Tape Step State Tape

1 s1 11 9 s2 1001

2 s2 01 10 s3 1001

3 s2 010 11 s3 10010

4 s3 0100 12 s4 10011

5 s4 0101 13 s4 10011

6 s5 0101 14 s5 10011

7 s5 0101 15 s1 11011

8 s1 1101 Halt

In the above table, the bold values in the tape column represent the current position of the
machine. If you run the example Compose program you should get similar output to that
shown above, as in the image below.

Output from the Turing machine ‘Turing’
14

Note however that since in the Compose representation it is assumed that there are infinitely
many zeros at both ends of the tape, preceding or following zeros are not displayed. This
sometimes makes the output from the Compose program appear different from that shown
in the table. In fact they are just slightly different representations of the same thing. An
image of the Compose Turing implementation is shown below. When running the Compose
implementation, you can progress to the next step of the Turing machine either by selecting
the ‘Send’ option from the TextView text window menu, or by clicking on the ‘Send’ button
in the text window toolbar.

An implementation of a Turing machine in Compose

The second Turing machine example supplied is called ‘Universal’. Unlike the other
example, this actually constitutes a Universal Turing Machine, meaning that it is able to
reproduce the effect of any other Turing machine depending on the values on the input tape,
the start state and the start position.

The program is an implementation of a Universal Turing Machine discovered by Wolfram,
as described in his book “A New Kind of Science”1. For more details, see the MathWorld
website page concerning Turing machines at http://mathworld.wolfram.com/
UniversalTuringMachine.html.

For both machines, you can change their behaviour by altering the six components along the
far left hand edge of the canvas. From top to bottom, the three ConstText components
represent the initial input tape, the initial position and the initial state respectively. The
pattern strings of the three TokenSub components represent all of the states in which the
head moves left, the new state transition formula and the new value written at the tape head
formula respectively. In all of these formulas, v1 represents the current tape contents

1 Wolfram, S. "A New Kind of Science". Champaign, IL: Wolfram Media, p. 707.
15

(encoded as a floating slash number). The variable v2 represents the tape position, where 0
is one place to the left of the decimal point increasing as the head moves left, with negative
values to the right of the decimal point. The variable v3 represents the current state of the
Turing machine. The variable v4 represents the current value underneath the machine head
on the tape. Finally, the variable v5 represents the new value that will be written underneath
the machine head on the tape.

16

